
CORESS. CONTROL

REVIEW WAIVER PER CLASSIFICATION OFFICE

C Crosed

TYPIST INITIALS

~46469 (Rev. 9/92)

N REPLY TO RFP CC NO: CTION ITEM STATUS

ATE

OPEN

EG&G ROCKY FLATS, INC. ROCKY FLATS PLANT, P.O. BOX 464, GOLDEN, COLORADO 80402-0464 • (303) 966-7000

000021834

94-RF-00323

Jennifer L. Pepe Environmental Restoration Division DOE, RFO

TRANSMITTAL OF MEETING MINUTES - PJL-002-94

Attached for your review are minutes from the meeting held with the Environmental Protection Agency (EPA) and the Colorado Department of Health at the EPA's Eagle Conference Room on December 23, 1993. Please call me at 966-8702 if you have questions.

Peter J. Laurin

January 7, 1994

Operable Unit 2 Project Manager Remediation Project Management

ilm

Orig. and 1 cc - J. L. Pepe

Attachment: As Stated

MEETING MINUTES CMS/FS PROGRAMMATIC TASKS

DATE:

December 23, 1993, 9am

LOCATION:

EPA Eagle Room, Denver

ATTENDEES:

Hopkins, Guillaume, Schubbe, Laurin, of EG&G; B. Frasier of EPA;

Norbury of CDH; Grace, Dille, Greengard representing DOE; and

Shangraw, Gee of Engineering-Science

NARRATIVE: An agenda for this meeting was provided by DOE and is attached to the minutes, as are all hand-outs. The items discussed follow the agenda generally.

Agenda Item 1, Introduction, was conducted by Scott Grace of DOE. Grace stated that DOE would like to discuss FS schedules, especially the OU2 schedule.

John Hopkins of EG&G lead the Item 2 discussions. He stated the purpose of the meeting was to initiate an information exchange between EPA, CDH and DOE on FS policies and procedures. The programmatic approach, beginning with OU2, will promote consistency in the FS process. Programmatic aspects to discuss include deliverables and schedules. Hopkins also stated they would like to identify FS leads at EPA and CDH to serve as prime contacts in the programmatic aspects. (Later in the meeting, EPA stated B. Frasier would serve as FS contact. Norbury of CDH postulated that Schiefflin would likely be the CDH FS lead.)

Agenda Item 3, the Programmatic Approach was delineated by Hopkins and Greengard. The task-by-task FS approach was handed out and discussed. EG&G requested that ultimately a documented agreement on the FS procedures and approach could be developed with EPA, CDH and DOE. EG&G's intent is to avoid situations similar to the risk/statistic problems on the RIs. As illustrative of the Programmatic Approach, ES staff presented the Task 3 work underway. The Comprehensive List of Technologies format was handed out and discussed. The Sitewide Treatability Studies was the basis for this work. OU1 will be included in the Programmatic efforts as possible (they are currently slightly ahead of this).

Agenda Item 4 covered the Proposed EPA Radiation Site Cleanup Regulations. In response to DOE inquiry, EPA responded that the schedule for these regulations is completely unknown at this time. DOE's concern was proceeding with FS work only to fall under additional regulations at some later date.

The second ongoing FS issue (Item 4) was the interaction between OU1 and OU2. Surficial soil remediation of radionuclides may be required at both sites. DOE would like to consolidate the FS work when possible to avoid redundant efforts. EPA recommended the FS effort on OU1 carry through the initial screening process. If like remediation is required at adjacent sites, DOE could then propose that a combined detailed analysis of alternatives be conducted as part of OU2.

The final agenda item included scheduling of a January 6 meeting to present a detailed schedule of OU2 FS work. That meeting will be January 6, at 9am in the Eagle Room at EPA.

AGREEMENT/CONSENSUS DECISIONS:

- 1. DOE will use a "Programmatic Approach" for OU's 2, 3 and 6 to ensure consistency between each OU's FS work. The programmatic methodology will be defined with agencies. The programmatic approach will ensure all OU's meet the requirements of the FS process.
- 2. DOE will submit an FS planning document which will explain and formalize the programmatic methodology.
- 3. The OU1 FS process is well underway. If it becomes necessary to address Pu remediation in OU1 surficial soils, the OU1 FS process will be completed through initial screening of alternatives. At that time, DOE may propose to EPA to complete the Detailed Analysis of OU1 surficial soils as part of the OU2 Detailed Analysis. The rationale is that similar/like remediation technologies at adjacent sites should be consolidated to maximize efficiencies and best utilize resources.
- 4. DOE will present a preliminary detailed OU2 CMS/FS schedule to EPA and CDH on January 6, 1994.

ACTION ITEMS:

- 1. DOE will prepare an FS planning document for submittal to EPA and CDH.
- 2. DOE will prepare and submit a detailed OU2 CMS/FS schedule. Submittal will take place via a meeting on January 6, 1994.

nan	re
indy	Gee
ichael	- Gui
K/K	LAURIA

Pete Lauren
Eriz Dille
ScottGrace
Bill Fraser
TOM GREGNGARD
Dennis Schube
John Hopkins
Dave Norbury
Tim Shanifikan

affiliation

ES

EG X G

Aguirre Eng. / BOE

DOE/ ER

SMS - RAD

EG & G

EG & G

CD #

ENGINETUNIS - SCIENCE

Phone

831-8100

966-8557 966-8702 966-8709 294-1081 966-3671 966-8709 966-8636 697 3415 831-8100

AGENDA FOR DISCUSSION OF PROGRAMMATIC FS/CMS ISSUES - ROCKY FLATS PLANT

DATE: DECEMBER 23,1993

TIME: 9 AM

LOCATION: U.S. ENVIRONMENTAL PROTECTION AGENCY

AGENDA ITEMS

- 1. INTRODUCTIONS
- 2. PURPOSE OF MEETING
- 3. PROGRAMMATIC APPROACH TO FS/CMS
- 4. FS/CMS APPROACH (PLANNING DOCUMENT)
- 5. CURRENT FS/CMS ISSUES
 - What is EPA's timetable for proposing Radiation Site Cleanup Regulations? Reference EPA 402-R-93-084, September, 1993, Issues Paper on Radiation Site Cleanup Regulations.
 - Discuss potential of moving surface soil plutonium in OU1 to OU2

6. ACTION ITEMS

- Establish date and location for mid January meeting to review a programmatic schedule/logic diagram for the FS/CMS process.
- Schedule dates and agenda items for OU1 and OU2 specific FS/CMS meetings

DRAFT FEASIBILITY STUDY/CORRECTIVE MEASURE STUDY ANNOTATED OUTLINE ROCKY FLATS PLANT

EXECUTIVE SUMMARY

1.0 Introduction

1.1 Purpose and organization of FS/CMS Study

The purpose of the FS/CMS follows:

- Develop a range of remedial action alternatives with respect to protection of human health and the environment, technical, institutional and cost considerations.
- Provide an analysis of the range of remedial alternatives developed that will support the selection of a remedial alternative(s) that is technically feasible and provides the necessary protection of human health and the environment in a cost-effective manner.
- Integrate the FS/CMS with all applicable RI/RFI and treatability study activities to ensure that all remedial alternatives are developed, screened, and evaluated in a systematic manner.

The FS/CMS report will be prepared at a minimum in accordance with U.S. EPA's "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA" (October 1988), EPA CERCLA Compliance with Other Laws manual (June, 1988), OSWER Directive 9234.1-01 and "EPA Guidance on Remedial Actions for Contaminated Ground Water at Superfund Sites" (August 1988).

1.2 Background Information (Summarized from RI/RFI Reports)

- 1.2.1 Site Description
- 1.2.2 Site History
- 1.2.3 Nature and Extent of Contamination
 - Summarize the nature and extent of contamination within each medium. Discuss contaminants of concern.
 - Summarize the nature of contamination within each medium by functional group.

- Discuss the extent of contamination within that medium.

1.2.4 Contaminant Fate and Transport

A summary of the fate and transport mechanism for contaminant migration by medium will be presented. This discussion will include the following:

- A discussion of the directions and rates of groundwater, surface water and air flow.
- A summary of the distribution of contaminant concentrations, if any, over time in the groundwater and surface water.
- A summary of the contaminant concentrations in air and the distribution of these concentrations with distance.

1.2.5 Summary of Baseline Risk Assessment

The BRA will provide an evaluation of the potential risk to human health and the environment in the absence of any remedial action. The Following information will be summarized from the BRA.

- Identification of the potential risk associated with the chemical and/or radionuclide hazard at the Operable Unit (OU). This includes determination of chemical concentrations and potential pathways of exposure to humans.
- Evaluation of the exposure to a chemical substance; i.e. concentrations at which exposure may occur to human health or environmental receptors via air, water, soil, or through the food chain.
- Environmental fate of the chemical substance; i.e. the potential for change and transport of a substance through the environment.
- Assessment of the resulting effect and evaluation of the hazard or potential adverse effects associated with a chemical; i.e. its toxicity
- Risk estimation, including compilation and analysis of the information obtained from the above evaluations to determine the consequences that can be anticipated following exposure to a hazard at the OU.
- 1.2.6 Summary of Interim Measures/Interim Remedial Actions

2.0 Identification and Screening of Technologies

2.1 Introduction

- Generate a list of candidate technologies for the Ou that may be used in assembling plausible remedial action alternatives.
- Screen technologies based on site and waste characteristics and effectiveness of the technology for application to the waste medium.

2.2 Remedial Action Objectives

- Identify contaminants of concern as identified in the BRA
- The exposure pathway assessment, toxicity assessment, and risk characterization for the contaminants of concern will be used to develop PAOs for each medium
- Develop RAOs specifying the contaminants and media of interest, exposure pathway and remediation goals.
- Calculate PRGs based on ARARs and the BRA process.

2.3 General Response Actions

- Develop general response actions for each medium of interest including no action, institutional controls, containment, removal, treatment and disposal.
- Estimate the area and volumes to which general response actions may be applied.
- 2.4 Identification and Screening of Technology Types and Process Options.
 - 2.4.1 Identification of Technologies Associated with the General Response Actions

General Response Action Example of Technologies

No Action None

Institutional Controls Access restrictions, monitoring

Containment

Capping, vertical barriers, horizontal barriers.

Removal

Bulk liquid, solids removal, ground-water

extraction

Treatment

Physical treatment, chemical, biological, in-

situ, thermal

Disposal:

Onsite or offsite storage in RCRA permitted area or RCRA certified landfill, POTW discharge, evaporation ponds

2.4.2 Screening of Technologies

- Eliminate technology types based on technical implementability

2.4.3 Selection of Representative Technologies

- Identify technology types and process options by utilizing a variety of sources including evaluation of technologies previously performed for the site, referenced developed for application to Superfund sites, and standard engineering texts.

3.0 Development of Alternatives

3.1 Introduction

- Develop a range of remedial action alternatives that include the following as specified in the National Contingency Plan (NCP).
 - No action
 - Treatment options that will eliminate or minimize to the extent feasible, the need for long-term site management
 - Treatment options that reduce the toxicity, mobility, or volume of the media as a principal element
 - Containment options utilizing little or no treatment

3.2 Alternative Analysis

Each alternative analysis will include the following:

- A brief description of the remedial alternative
- An evaluation and selection based on short term and long term aspects of three broad criteria:
 - . Effectiveness
 - . Implementability
 - . Cost

3.3 Summary of Initial Screening of Alternatives

- Present the results of the initial screening of alternatives in flow chart, table and/or text format

4.0 Detailed Analysis of Alternatives

4.1 Introduction

- A detailed analysis will be conducted for each of a limited number of alternatives that represent viable approaches to remedial action

4.2 Analysis of Alternatives

- The detailed analysis will consist of a narrative discussion of individual alternatives with respect to the nine evaluation criteria specified in the NCP

4.2.1 Alternative Definition

4.2.1.1 Detailed Description of Each Remedial Alternative

- Describe each technology and how it will be integrated with other technologies for each remedial alternative. A preliminary engineering design will be presented for each alternative.

4.2.1.2 Assessment

- Each of the remedial alternatives will be evaluated based on the following nine criteria. The NCP requires that all alternatives meet two threshold criteria.

Threshold Criteria

- Compliance with ARARs - This assessment against this

criterion describes how the alternative complies with ARARS, or if a waiver is required, how it is justified. This assessment will also address other information from advisories, criteria, and guidance from the EPA and support agencies that they have agreed is "to be considered"

- Overall Protection This criterion will access the alternative as a whole and address if it achieves and maintains protection of human health and the environment

Balancing Criteria

If the threshold criteria are satisfied, then five sets of "Balancing Criteria" are developed against which to compare the alternatives.

- Short-Term Effectiveness. This criterion will be examined based on the effectiveness of the alternatives in protecting human health and the environment during the construction and implementation of a remedy until response objectives have been met
- Long Term Effectiveness and Permanence This criterion will be examined based on the effectiveness of the alternatives in maintaining protection of human health and the environment after response actions have been met
- Reduction of Mobility, Toxicity and Volume (MTV) through Treatment. This criterion evaluates the anticipated performance of the specific treatment technologies in permanently and significantly reducing the MTV of the hazardous substances.
- Implementability. This assessment will evaluate the technical and administrative feasibility of alternatives and the availability of goods and services.
- Cost. This assessment evaluates the capital and operation and maintenance (O&M) costs of each alternative.

Modifying Criteria

Two additional "Modifying Criteria" are specified in the NCP, which are a third tier upon which to compare alternatives.

- State Acceptance. This assessment will reflect the State of Colorado's preference among or concerns about alternatives.

- Community Acceptance. This assessment will reflect the community's preference among or concerns about the alternatives.

4.2.2 Summary of Analysis of Alternatives

- A summary of results of the detailed analysis of the remedial alternatives will be presented in the format of text, tables and flow charts.

5.0 Comparison Among Alternatives

- A comparative analysis will be conducted to evaluate the relative performance of each alternative in relation to each specific evaluation criteria. The advantages and disadvantages of each alternative relative to one another will be identified. A Summary of the comparisons among alternatives will be presented in text, tables, and/or flow charts

6.0 Recommended Remedy

- The recommended remedy will be presented based on the analyses in Sections 4.0 and 5.0.

Bibliography

Appendixes

- Appendixes will contain documentation to back up specific sections. For example, details of cost analyses, ARARs rationale and back-up data for computer modeling will be presented in an appendix.

FS/CMS APPROACH

TASK 1 EVALUATION OF DATA SUFFICIENCY

Objective: Review available RI/RFI data, treatability study information and vendor information and determine where data insufficiencies exist and propose activities which could reduce the uncertainties to levels consistent with DQOs for each decision area.

Criteria for Data Sufficiency Review:

- 1) Are additional treatability studies required?
- 2) Are pilot-scale studies required to refine cost information or to further assess the effectiveness of the technology?
- 3) Can volumes and areal extent of contaminated media be delineated?
- 4) What are specific concentrations and types of contaminants in media?
- 5) Is contamination in media discrete or homogenous?
- 6) Are other constituents of media known (constituents that may interfere with or enhance a remediation technology)?
- 7) Are sufficient soils data and aquifer data available to evaluate technology/process options and groundwater modeling?

Key Decisions:

- 1) If data gaps are identified, does the cost of acquiring the data outweigh the cost of proceeding with the uncertainties?
- 2) Can bench or pilot-scale studies be put off until remedial design?
- 3) What type of groundwater modeling will be required. Will the BRA model have to be revised (e.g. Is the grid size correct?). If pump and treat scenarios are evaluated, how will well spacings be determined.

Relation to Other Tasks:

- 1) RI/RFI reports The Nature and Extent of Contamination section of the RI/RFI report must be complete.
- 2) Treatability Studies data on specific technologies will be reviewed to see if there is sufficient information to determine a technology's effectiveness and capital and O&M cost
- 3) Strategic Planning Will OU specific media be combined and treated with material from other OUs, thereby reducing overall costs?

TASK 2 REVIEW OF ARARS

Objective: Perform a critical review of potential applicable or relevant and appropriate requirements (ARARs) and perform a preliminary ARARs assessment considering site specific factors (i.e., hydrogeology, contamination, migration pathways, etc.) as well as regulatory issues established by DOE Orders, U.S. EPA, CDH, the Atomic Energy Act, and related statutes and guidelines.

Criteria for Review of ARARS

- 1) Meet with ARARs Coordinator to discuss ARARs strategy and obtain latest ARARs documents, e.g. Site-wide Benchmark Tables.
- 2) Determine if there is sufficient information to prepare preliminary action and location specific ARARs.
- 3) Schedule sufficient review time with ARARS Coordinator for EG&G and DOE ARARS review.

Key Decisions:

- 1) Can FS/CMS work proceed independently of ARARs resolution with Agencies?
- 2) At what point in the OU FS/CMS process will action and location specific ARARs be prepared?
- 3) At what point in the OU FS/CMS process will ARARs be updated?

Relation to Other Tasks:

- 1) Preliminary Remediation Goals determination of chemical-specific ARARs will be required to finalize PRGs.
- 2) Evaluation Criteria (FS/CMS Phase 2) Alternatives have to be evaluated against ARARs. If ARARs cannot be met for a preferred remedy, then a waiver must be applied for.

TASK 3 IDENTIFICATION OF TECHNOLOGIES

Objective: A Comprehensive List of Technologies/Process Options has been developed on a Programmatic Basis for use in all OU FS/CMSs. The CLT will be used to present information on an OU specific basis on technologies and process options to facilitate an analysis of the applicability of a technology or process option.

Criteria for Identification of Technologies

- 1) The CLT developed under Task 3 will be the basis for screening of technologies and process options under Task 6.
- 2) The programmatic CLT will be updated, if required, for each OU FS/CMS.
- 3) In addition to using the Programmatic CLT, a review of innovative technologies will be conducted for specific applicability for each OU.

TASK 4 DEVELOP REMEDIAL ACTION OBJECTIVES, GENERAL RESPONSE ACTIONS AND PRELIMINARY REMEDIATION GOALS

Objective: Remedial action objectives (RAOs) will be developed for each OU and media specific preliminary remediation goals will be developed to meet the RAOs. General Response Actions (GRAs) will then be developed that describe the initial areas and volumes to be remediated based on the PRGs for each OU.

Criteria for developing RAOs, GRAs, and PRGs

- 1) If the baseline risk assessment (BRA) has been completed, develop PRGs based on the BRA.
- 2) If the BRA has not been completed, use the draft or final COC TM and calculate a limited number of PRGs according to EPA RAGs guidance (Part B) and also use the Sitewide Benchmark tables. Revise PRGs when the BRA has been finalized.

Key Decisions:

1) Should PRGs be calculated based on the BRA or initially based on the COC TM and then updated to reflect the BRA. The second approach will allow an earlier start on Task 6 and subsequent tasks.

Relation to Other Tasks:

1) RFI/RI Reports - The Chemicals of Concern TM of the RFI/RI report must be complete.

Task 5 TECHNICAL MEMORANDUM 1 - CORRECTIVE/REMEDIAL ACTION OBJECTIVES

Objective: A Technical Memorandum will be prepared per Section IX.A.4, Attachment 2 of the IAG to propose site-specific corrective/remedial action objectives.

Criteria for TM1: TM1 shall contain the following:

- 1) the contaminants and media of interest
- 2) the volumes and areas of such media
- 3) exposure pathways and receptors
- 4) risk-based PRGs
- 5) the methodology used to develop PRGs

Key Decisions:

1) EPA and CDH will review and comment on TM1. Can work start on Tasks 6 and 7 before resolution of comments on TM1?

Task 6 INITIAL SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS

Objective: Applicable technologies (including innovative technologies) will be screened based on site-applicability as well as PRGs and ARARs for each specific OU.

Criteria for the initial screening of technologies and process options:

- 1) The CLT will be tailored to each OU based on site-applicability (media to be cleaned up, and physical/infrastructure requirements.
- 2) The information used for site applicability will be the OU data from the EDS report
- 3) The OU specific technology will then be matched against the PRG/ARAR requirements of that OU.

Key Decisions:

1) Can work start on Task 6 before resolution of comments on TM1?

Task 7 ASSEMBLE THE REPRESENTATIVE TECHNOLOGIES AND PROCESS OPTIONS INTO ALTERNATIVES

Objective: Representative process options will be assembled into alternatives that represent a range of treatment and containment alternatives as specified in the National Contingency Plan.

Criteria for assembling the representative technologies and process options into alternatives:

- 1) The range of alternatives for each OU shall include the range of alternatives specified in the NCP.
- 2) Each alternative will be described based on preliminary sizing of unit operations considering the proposed volume of contaminated media.

Key Decisions:

- 1) If a similar contaminated media exists in another OU, can the media be combined for treatment or containment?
- 2) Is the range of alternatives assembled for initial screening complete? EPA and CDH concurrence is critical at this point.

Relation to Other Tasks:

- 1) Information on the Site-wide treatability study program and on innovative technologies should be reviewed at this point.
- 2) ARARs and PRGs should be updated at this point.

TASK 8 SCREENING OF ALTERNATIVES

Objective: The goal of this screening is to ensure that only alternatives with the most overall benefit, based on an evaluation

of the three criteria specified in the National Contingency Plan, are retained for detailed analysis.

Criteria for the Initial Screening of Alternatives:

- 1) Each alternative developed in Task 7 will be screened against three criteria: effectiveness, implementability and relative cost.
- 2) A rational basis will be presented for retaining or not retaining an alternative for detailed analysis.

Key Decisions:

- 1) Concurrence on the level of detail required to support the initial screening (e.g. is groundwater modeling required in the initial screening or in the detailed analysis of alternatives?
- 2) Concurrence on the list of alternatives to be carried into the detailed analysis of alternatives.

TASK 9 TECHNICAL MEMORANDUM NO.2 - PRELIMINARY ALTERNATIVES DEVELOPMENT AND SCREENING

Objective: A Technical Memorandum will be prepared per Section IX.B of the IAG to summarize development and initial screening of alternatives.

Criteria for TM2: TM2 shall contain the following:

- 1) A summary of the results of Tasks 6,7, and 8.
- 2) Summarize the rationale used in the screening process
- 3) List the alternatives to be carried forward into the detailed analysis of alternatives.
- 4) Propose action-specific ARARs for the alternatives that remain after the initial screening of alternatives.

Key Decisions: EPA and CDH will review and comment on TM2. Can work start on Tasks 10 and 11 before resolution of comments on TM2?

TASK 10 DETAILED ANALYSIS OF ALTERNATIVES

Objective: To evaluate remedial alternatives so that relevant information regarding the remedial alternatives can be presented to a decision maker and an appropriate remedy can be selected.

Criteria for the detailed analysis of alternatives:

- 1) Provide a detailed description (preliminary engineering design) of each alternative that outlines the waste management strategy involved.
- 2) Evaluate each alternative against the nine criterion specified in the NCP.
- 3) Provide a detailed analysis of the costs versus risk reduction/benefit of each alternative. This analysis will be based on the cost of each alternative to attain ARARs and risk based remediation goals across the lifetime added cancer risk range of

- 1 \times E-4 to 1 \times E-6. The analysis will evaluate the cost versus risk reduction/benefit of alternative remediation requirements based on the range of plausible baseline risks detailed in the BRA.
- 4) A comparative analysis will be conducted to evaluate the relative performance of each alternative in relation to each specific evaluation criteria.
- 5) A preferred alternative will be identified that considers the requisite nine criteria analysis as well as the cost versus risk/benefit versus the risk/benefit assessment.

Key Decisions:

- 1) What are the requirements for long term monitoring? These will be detailed and costed for each alternative.
- 2) What is the extent of groundwater modeling required to support the detailed analysis of alternatives?
- 3) How will requirements for NEPA compliance be integrated with the detailed analysis of alternatives? Will they be addressed under Short Term Effectiveness or in a separate document?
- 4) What indirect costs will be added to the construction cost estimate to reflect the real cost of remediation.

TASK 11 FS/CMS REPORT

Objective: A FS/CMS report will be prepared per Section 1.X.D.1 of the IAG to describe and substantiate the rationale behind all findings and summarize all findings into a concise format to facilitate communication with technical and non-technical audiences.

Criteria for the FS/CMS Report

- 1) The main text will present an orderly description of the FS/CMS development. Detailed technical work such as risk reduction methods, groundwater modeling and costing shall be presented in stand-alone appendices.
- 2) An executive summary section will be prepared that forms the basis for the Proposed Remedial Action Plan.

Instructions for Entering Data into the Rocky Flats Comprehensive List of Technologies

dBASE® IV has been utilized to organize a database containing information on Process Options. There are nine files on the diskette provided under the file name DE324.XXX. To operate the database, load all files into a RUST dBASE® IV catalog. Please utilize the data column to input new information and the reports column to print out the database for quality assurance/quality control purposes.

Note: Memo fields are stored in a second database.

To open a memo field type Control Home To close a memo field type Control End

The field names and information needed for each field are as follows: (please be sure to close the memo field at the end of the last word without hitting the carriage return)

Struc	ture for data	base: C:\DB	ASE\CLTD	3\DE324	.DBF
Numbe	r of data reco	ords: 1	09		
Date	of last update	e : 12/16	/93		
Field			Width	Dec	Index
1			4		Y
2	_	Character	4		Y
3		Character	3		Y
4			30		Y
5	PROCESS OP	Character	40		Y
6	DESCRIPT	Memo	10		N
7	METALS	Logical	1		N
8	PCBS	Logical	1		N
9	RADS	Logical	1		N
10	vocs	Logical	1		N
11	L SVOCS	Logical	1		N
12	2 OTHER	Logical	1		N Y
13	SPEC CONTA	Character	50		
14	4 EFFECTIVE	Memo	10		N
19	5 IMPLEMENT	Memo	10		N N
10	6 COST	Memo	10		
1	7 REFERENCE	Memo	10		N
13	8 VENDOR	Memo	10		N
19	9 DATA NEEDS	Memo	10		N
2	0 COMMENTS	Memo	10		N
** T	otal **		218		

Entry Number:

Number each record entered into the database. Entry numbers should be categorized as follows:

100-199 Aboveground water
200-299 In-situ ground water
300-399 In-situ surface water
400-499 Aboveground sludges
500-599 In-situ sludges
600-699 Aboveground soils and sediments
700-799 In-situ soils and sediments

Media

Enter the acronym representing the media in which the process option is applicable

Aboveground Water	ABGW
In-situ Ground water	ISGW
In-situ Surface Water	ISSW
Aboveground Sludges	ABSL
In-situ Sludges	ASSL
Aboveground Soils and Sediments.	ABSS
In-situ Soils and Sediments	ISSS

General Response Action

Enter the acronym representing the General Response Action in which the process option is to be categorized

Containment	CMT
In-situ Treatment	IST
Removal	RML
Disposal	DSP
Aboveground Treatment	AGT

Technology Type

Enter the technology type in which the process option is to be categorized (e.g., chemical treatment, physical treatment, thermal treatment, etc.)

Process Option

Enter the name of the specific process option (vendor name if process is unique to vendor)

Description

Description of specific Process Option

Applicable Contaminants

Select a Y = Yes or N = No if the group of contaminants is applicable to the Process Option

Metals	M
PCB/pesticides	P
Radionuclides	R
VOCs	V
SVOCs	S
Other	0

Specific Contaminants

List of specific compounds which are applicable to the Process Option

Effectiveness

Address the following issues in order, if applicable to the Process Option (Note: Precede each issue with a hyphen, then use a carriage return upon completion of answering each separate issue.)

- Residual treatment level/removal efficiency
- Additional processes or secondary treatments required
- Effects of site conditions on process effectiveness
- Reductions in toxicity, mobility or volume
- Short term and long term effectiveness

Implementability

Address the following issues in order, if applicable to the Process Option (Note: Precede each issue with a hyphen, then use a carriage return upon completion of answering each separate issue.)

- Equipment availability
- Process proven/established or innovative
- Installation/O&M requirements
- Pilot, bench or process scale testing required or performed historically
- Regulatory/public acceptance
- Effects of site conditions on implementation process
- Time restraints

Cost

List available cost data, for example

- Order of magnitude
- Unit rates (with volume scale up factor e.g., \$1 to \$3.5/pound, rate decreases 10% with each additional 50 lbs).
- Capital
- Operations and maintenance

References

Sources of Information (e.g., databases, technical papers) 551/R9-5-10

Vendors

Vendors providing equipment and services for specific Process Options (For numerous vendors offering equipment and services for the same Process Option, please limit the list to 50 characters or five vendors, which ever is satisfied earliest)

Comments

Comments may include additional information to further clarify previously stated information or which is not appropriate to the categories above.

Bibliography

Provide a list of references in alphabetical order as follows:

Authors last name, first name, year. title of book or journal, title of article (if appropriate), publishing company, publishing city, state, month.

Page No. 148 12/21/93

ENTRY NUMBER

162 ABGW

MEDIA

AGT GENERAL RESPONSE

TECHNOLOGY TYPE

PHYSICAL TREATMENT

PROCESS OPTION

SOLAR DETOXIFICATION

DESCRIPTION

CONTAMINANTS ARE BROKEN DOWN INTO NONTOXIC

COMPOUNDS BY EXPOSURE TO SUNLIGHT AND MIXTURE

WITH A NONTOXIC CATALYST (TiO2)

METALS

N

PCBS RADIONUCLIDES

N

VOCS

Y

SVOCS

N

OTHER

N

SPECIFIC COMPOUNDS

TCE

EFFECTIVENESS

- DEMONSTRATION TEST RESULTED IN TCE DESTRUCTION

TO NONDETECTABLE LEVELS

- PROCESS BYPRODUCTS INCLUDE CARBON DIOXIDE,

CHLORIDE IONS, AND WATER

- SECONDARY TREATMENT MAY BE REQUIRED FOR USED

CATALYST MATERIAL

- REDUCES TOXICITY OF WASTE STREAM

IMPLEMENTABILITY

- EQUIPMENT NOT READILY AVAILABLE

- INNOVATIVE PROCESS, NOT WELL-ESTABLISHED

- INSTALLATION AND O&M REQUIREMENTS UNKNOWN - FIELD DEMONSTRATION UNIT WAS CAPABLE OF TREATING

OVER 7,000 GAL/DAY

- PERMITTING AND PUBLIC ACCEPTANCE NOT ESTABLISHED

COST

NO COST DATA FOUND IN REFERENCES

REFERENCE

FEDERAL DEMONSTRATIONS, EPA 1993B

TSP, EG&G 1991

VENDOR

NO VENDORS IDENTIFIED

COMMENTS

Page No. 149 12/21/93

ENTRY NUMBER

163

MEDIA

ABGW

GENERAL RESPONSE

AGT

TECHNOLOGY TYPE

BIOLOGICAL TREATMENT

PROCESS OPTION

BIOLOGICAL SORPTION

DESCRIPTION

ALGAE OR OTHER BIOMASS (E.G., SPHAGNUM PEAT MOSS) IS USED TO REMOVE HEAVY METAL IONS FROM AQUEOUS

SOLUTION SIMILAR TO ION EXCHANGE RESINS

METALS

Y

PCBS

N

RADIONUCLIDES

Y

vocs

N

SVOCS

N

OTHER

N

SPECIFIC COMPOUNDS

AL, CD, CR, CO, CU, PB, HG, UR, ZN

EFFECTIVENESS

- HIGH REMOVAL EFFICIENCIES HAVE BEEN DOCUMENTED

- GREATER EFFICIENCIES ACHIEVED BY RECIRCULATING

OF AQUEOUS WASTE

- PRODUCES CONCENTRATED WASTE STREAM REQUIRING

TREATMENT OR DISPOSAL

- REDUCES TOXICITY OF WASTE STREAM

IMPLEMENTABILITY

- EOUIPMENT COMMERCIALLY AVAILABLE

- PROCESS PROVEN THOUGH CONSIDERED INNOVATIVE

- MOBILE TREATMENT UNITS AVAILABLE

- PILOT TESTING REQUIRED

- PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE

STRAIGHTFORWARD

COST

NO COST DATA FOUND IN REFERENCES

REFERENCE

SITE PROFILES, EPA 1992

FEDERAL DEMONSTRATION, EPA 1993B

VENDOR

BIO-RECOVERY SYSTEMS, INC., LAS CRUCES, NM

COMMENTS

"BIO-FIX" BEADS HAVE BEEN TESTED BY U.S. BUREAU OF

MINES

TABLE OUZA1

Page No. 1

General Response Action, Technology Type, Process Option, and Description ROCKY FLATS PLANT LIST OF TECHNOLOGIES FOR OUZ GROUND WATER TREATMENT

MEDIA: ABGW

CONTAMINANTS OF CONCERN: Metals, Radioactive Isotopes, and Volatile Organic Compounds

M P R V S O	TAMINATED FLUID INTO A NYNYYY CHAMBER	SEPARATION OF FLUIDS YYYYYY	RENT MICROORGANISMS N N Y Y Y VASTE STREAM	N PACKED-BED REACTOR NNNYYY BY THE BIOMASS	ED OUT OF SOLUTION BY YYYYY	RAL GEOCHEMICAL AND YNNYYY ULATE AND REMOVE CS FROM INFLUENT AND ANAEROBIC	D POLYHYDROXIDE Y N N Y Y N
DESCRIPTION	ATOMIZING NOZZLES INJECT CONTAMINATED FLUID INTO A REFRACTORY LINED COMBUSTION CHAMBER	SPINNING DRUM OR BOWL FORCES SEPARATION OF AND SUSPENDED SOLIDS	AERATED RESERVOIRS AND DIFFERENT MICROORGANISMS USED TO AEROBICALLY DEGRADE WASTE STREAM	WASTEWATER TRICKLES THROUGH A PACKED-BED REACTOR AND CONTAMINANTS ARE REMOVED BY THE BIOMASS GROWING ON THE PACKING MATERIAL	SUSPENDED PARTICLES ARE SETTLED OUT OF SOLUTION BY GRAVITY	CONSTRUCTED WETLANDS USE NATURAL GEOCHEMICAL AND BIOLOGICAL PROCESSES TO ACCUMULATE AND REMOVE METALS, AND TO DEGRADE ORGANICS FROM INFLUENT WASTEWATER, PROVIDES AEROBIC AND ANAEROBIC CONDITIONS	INTRODUCTION OF HIGHLY CHARGED POLYHYDROXIDE
PROCESS OPTION	LIQUID INJECTION INCINERATOR	CENTRIFUGATION	AERATED LAGOONS/PONDS	TRICKLING PILTER	SEDIMENTATION	WETLANDS-BASED TREATMENT	ELECTROCOAGULATION
TECHNOLOGY TYPE	THERMAL TREATMENT	PHYSICAL TREATMENT	BIOLOGICAL TREATMENT	BIOLOGICAL TREATMENT	PHYSICAL TREATMENT	BIOLOGICAL TREATMENT	PHYSICAL TREATMENT
SR RESPONSE ACTION	AGT	AGT	AGT	AGT	AGT	AGT	AGT P
NUMBER	135	142	147	141	102	140	104

ALUMINUM SPECIES PROMPTS FLOCCULATION OF COLLOIDAL

M=Metals, P*PCBs/Pesticides, R=Radioactive Isotopes, V=Volatile Organic Compounds, S=Semivolatile Organic Compounds, O=Other

AGT=Above Ground Treatment

TABLE OU2A1

Page No. ' 2

ROCKY FLATS PLANT LIST OF TECHNOLOGIES FOR OU2 GROUND WATER TREATMENT General Response Action, Technology Type, Process Option, and Description

MEDIA: ABGW

CONTAMINANTS OF CONCERN: Metals, Radioactive Isotopes, and Volatile Organic Compounds

CONTAMINANTS.	0 > 		z > > z z	* * * * * * *	>- >- >- >- 2 >- 2	z z z x	* * * * * * * * * * * * * * * * * * *	NYN
DESCRIPTION		PARTICLES AND DESTABILIZATION OF OIL-IN-WATER EMULSIONS	METHANOTROPHS DEGRADE CONTAMINANTS AEROBICALLY IN A BIOREACTOR; METHANOTROPHS ARE BACTERIA THAT CAN USE METHANE AS CARBON AND ENERGY SOURCE		WHITE-ROT FUNGUS HAS BEEN USED TO DEGRADE A WIDE VARIETY OF ORGANIC WASTES; ROTATING BIOLOGICAL CONTACTORS HAVE BEEN USED	IRON-COATED SAND GRAINS ACT SIMULTANEOUSLY AS FILTER AND ADSORBENT	ANAEROBIC CONDITIONS AND MICROBES ARE USED TO EITHER DEGRADE OR PRECIPITATE CONTAMINANTS USING ONE OF A VARIETY OF REACTOR TYPES	USE OF ELECTRON BEAM TO OXIDIZE CONTAMINANTS
PROCESS OPTION			METHANOTROPHIC BIOREACTOR	PO*WM*ER PROCESS	WHITE-ROT FUNGUS	ADSORPTIVE FILTRATION	ANAEROBIC REACTORS	HIGH-ENERGY ELECTRON IRRADIATION
TECHNOLOGY TYPE			BIOLOGICAL TREATMENT	CHEMICAL TREATMENT	BIOLOGICAL TREATMENT	PHYSICAL TREATMENT	BIOLOGICAL TREATMENT	PHYSICAL TREATMENT
RESPONSE ACTION			AGT .	· AGT	AGT	AGT	AGT	AGT
ENTRY NUMBER R			139	106	138	108	137	110

TABLE OUZA2

ROCKY FLATS PLANT LIST OF TECHNOLOGIES FOR OUZ GROUND WATER TREATMENT Process Option, Effectiveness, Implementability and Cost

MEDIA: ABGW

CONTAMINANTS OF CONCERN: Metals, Radioactive Isotopes, and Volatile Organic Compounds

COST	NO COST DATA FOUND IN REFERENCES	FOR SOLID BOWL CENTRIFUGE WITH CAPACITY OF 10 GPM: CONSTRUCTION COST: \$280,000 O&M COST: \$ 28,000 PER YEAR (REMEDIAL ACTION, EPA 1985)	\$100 - \$350 PER CUBIC YARD (VISITT DATABASE) \$30 - \$600 PER TON (VISITT DATABASE)	\$0.50/GALLON REQUIRES HIGH CAPITAL INVESTMENT (FEDERAL DEMONSTRATIONS, EPA 1993B)
IMPLEMENTABILITY	- EQUIPMENT COMMERCIALLY AVAILABLE - NO UNITS CURRENTLY IN COMMERCIAL OPERATION - REQUIRES SUPPLEMENTAL FUEL - HIGH ENERGY CONSUMPTION - PERMITTING AND PUBLIC ACCEPTANCE MAY BE DIFFICULT	- EQUIPMENT READILY AVAILABLE - PROCESS IS PROVEN AND ESTABLISHED - OPERATIONS AND MAINTENANCE ARE HIGH EFFORT - FULL-SCALE APPLICATIONS ARE COMPLETED - PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE STRAIGHTFORWARD	- EQUIPMENT READILY AVAILABLE - PROVEN AND ESTABLISHED PROCESS - FULL-SCALE APPLICATIONS COMPLETED - PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE STRAIGHTFORWARD	- EQUIPMENT IS READILY AVAILABLE - TREATMENT PROCESS IS WELL-ESTABLISHED - TREATABILITY STUDIES ARE REQUIRED TO DETERMINE IF CONTAMINANTS ARE BIODEGRADABLE
BFFECTIVENESS	- REMOVAL EFFICIENCIES TO 99.9% - FLUE GASES LEAVING THE UNIT MUST BE TREATED - REDUCES TOXICITY OF WASTE STREAM	- EFFECTIVE FOR PARTICLE SIZES GREATER THAN 10 MICRONS - SOLIDS CAPTURE OVER 85% WITH CHEMICAL CONDITIONING - BYPRODUCT SLUDGES REQUIRE TREATMENT OR DISPOSAL - REDUCES TOXICITY OF WASTE STREAM	- 50-70% EFFICIENCY - PRODUCES SLUDGE REQUIRING TREATMENT OR DISPOSAL - POLISHING STEP TYPICALLY REQUIRED - METALS MAY INHIBIT BIODEGRADATION - REDUCES TOXICITY OF WASTE STREAM	- UP TO 90% EFFICIENCY - GENERATES LARGE VOLUMES OF SLUDGE REQUIRING TREATMENT OR DISPOSAL - REDUCES TOXICITY OF WASTE STREAM
PROCESS OPTION	LIQUID INJECTION INCINERATOR	CENTRIFUGATION	AERATED LAGOONS/PONDS	TRICKLING FILTER
ENTRY	135	142	147	141

~` *

TABLE OUZA2

ROCKY FLATS PLANT LIST OF TECHNOLOGIES FOR OUZ GROUND WATER TREATMENT Process Option, Effectiveness, Implementability and Cost

MEDIA: ABGW

CONTAMINANTS OF CONCERN: Metals, Radioactive Isotopes, and Volatile Organic Compounds

COST		FOR 1.0 MGAL/DAY PLANT CAPACITY: CAPITAL COST: \$600,000 O & M COST: \$100.000 (REMEDIAL ACTION, EPA 1985)	NO COST DATA FOUND IN REFERENCES
IMPLEMENTABILITY	AND RATE OF BIODEGRADATION - FULL-SCALE TECHNOLOGY - PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE STRAIGHTFORWARD	- EQUIPMENT COMMERCIALLY AVAILABLE - PROVEN PROCESS - SETTLED SOLIDS SHOULD PERIODICALLY BE REMOVED - PROCESS SCALE SEDIMENTATION HAS BEEN USED HISTORICALLY - UNDER IDEAL SETTLING CONDITIONS, SEDIMENTATION DEPENDS ONLY ON THE FLOW RATE, BASIN SURFACE AREA, AND PROPERTIES OF THE PARTICLE - PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE STRAIGHTFORWARD	- CONSTRUCTION USING STANDARD EQUIPMENT AND MATERIALS - WETLANDS TREATMENT IS AN EMERGING TECHNOLOGY - REQUIRES LARGE AMOUNTS OF LAND AREA - WETLANDS ARE AFFECTED BY CLIMATE AND TEMPERATURE
EFFECTIVENESS	- METALS MAY INHIBIT PROCESS	- MOST CLARIFIERS ARE CAPABLE OF REMOVING 90% TO 99% OF THE SUSPENDED SOLIDS - USUALLY REQUIRED AS A PRE-TREATMENT STEP FOR MANY CHEMICAL PROCESSES - REDUCES TOXICITY OF WASTE STREAM	- 50-90% REMOVAL EFFICIENCY FOR BODS - UP TO 100% REMOVAL OF METALS - LOADING RATES STRONGLY AFFECT REMOVAL EFFICIENCIES - REDUCES TOXICITY AND MOBILITY OF CONTAMINANTS
PROCESS OPTION		SEDIMENTATION	WETLANDS - BASED TREATMENT
ENTRY		102	140

DETERMINE IF CONTAMINANTS ARE BIODEGRADABLE - PERMITTING AND PUBLIC ACCEPTANCE MAY BE

DIFFICULT

- TREATABILITY STUDIES ARE REQUIRED TO

Page

ROCKY FLATS PLANT LIST OF TECHNOLOGIES FOR OUZ GROUND WATER TREATMENT Process Option, Effectiveness, Implementability and Cost

TABLE OUZA2

MEDIA: ABGW

CONTAMINANTS OF CONCERN: Metals, Radioactive Isotopes, and Volatile Organic Compounds

COST	NO COSTS PROVIDED BY VENDOR	\$0.50/GALLON (WESTINGHOUSE SAVANNAH RIVER COMPANY) \$150 - \$450 PER TON (HAZARDOUS WASTE CONSULTANT, MAY/JUNE	FOR 50 GPM SYSTEM: CAPITAL COSTS: \$4,000,000 ANNUAL O&M: \$3,300,000 (FEDERAL DEMONSTRATIONS, EPA 1993B)
IMPLEMENTABILITY	- EQUIPMENT NOT READILY AVAILABLE - INNOVATIVE TECHNOLOGY; NOT YET ESTABLISHED - TWO YEARS OF LAB-SCALE TESTING COMPLETED - UNKNOWN INSTALLATION/O&M REQUIREMENTS - PERMITTING AND PUBLIC ACCEPTANCE ISSUES NOT ESTABLISHED	- EQUIPMENT IS READILY AVAILABLE - ONLY DEMONSTRATED AT PILOT-SCALE LEVEL - TREATABILITY STUDIES WILL BE REQUIRED TO DETERMINE IF CONTAMINANTS CAN BE DEGRADED IN A METHANOTROPHIC BIOREACTOR SYSTEM - PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE STRAIGHTFORWARD	- EQUIPMENT COMMERCIALLY AVAILABLE - PROCESS IS PROVEN, BUT NOT WELL-ESTABLISHED - FULL-SCALE SYSTEMS CURRENTLY ON-LINE - PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE STRAIGHTFORWARD
EFFECTIVENESS	- EFFECTIVE FOR BREAKING UP STABLE AQUEOUS SUSPENSIONS UP TO 10% TOTAL SOLIDS AND STABLE AQUEOUS EMULSIONS CONTAINING UP TO 5% OIL EFFECTIVENESS COMPARABLE TO CHEMICAL FLOCCULENT ADDITION BUT WITH REDUCED TIME AND SLUDGE VOLUME - METALS REMOVAL FROM 50% TO OVER 95% - SOLID PHASE BYPRODUCT REQUIRES TREATMENT OR DISPOSAL - DEWATERING FILTRATE CAN BE RECYCLED - REDUCES CONTAMINANT TOXICITY	- 80-90% REMOVAL EFFICIENCY - METALS MAY INHIBIT BIODEGRADATION - PRODUCES LARGE VOLUMES OF SLUDGE REQUIRING DISPOSAL OR TREATMENT - REDUCES TOXICITY OF WASTE STREAM	- EFFECTIVE FOR TREATMENT OF WIDE RANGE OF CONTAMINANTS - NO DATA FOUND ON RESIDUAL CONCENTRATIONS - OFF-GAS MAY REQUIRE TREATMENT - REDUCES TOXICITY OF WASTE STREAM
PROCESS OPTION	ELECTROCOAGULATION	METHANOTROPH I C BIOREACTOR	PO*WW*ER PROCESS
ENTRY	104	139	106

TABLE OUZAZ

ROCKY FLATS PLANT LIST OF TECHNOLOGIES FOR OUZ GROUND WATER TREATMENT Process Option, Effectiveness, Implementability and Cost

MEDIA: ABGW

CONTAMINANTS OF CONCERN: Metals, Radioactive Isotopes, and Volatile Organic Compounds

COST	LABLE NO COST DATA FOUND IN REFERENCES NOT HAS BEEN FEPTANCE NOT	AILABLE CAPITAL COST FOR TRAILER PLUS UNIT (25 S AS OF 1988 GPM): \$150,000 E EFFLUENT O&M COST: \$1.50 - \$2.00 PER 1,000 ASHING GALLONS OMPLETED (FILTER FLOW TECHNOLOGY, INC.) EPTANCE SHOULD	LABLE \$150 - \$450 PER TON (HAZARDOUS WASTE CONSULTANT, MAY/JUNE-ESTABLISHED 1993) REQUIRED TO \$30 - \$60 PER 1,000 GALLONS (VISITT DATABASE)
IMPLEMENTABILITY	- EQUIPMENT IS READILY AVAILABLE - PROCESS IS INNOVATIVE AND NOT WELL-ESTABLISHED - ONLY BENCH-SCALE TESTING HAS BEEN CONDUCTED - PERMITTING AND PUBLIC ACCEPTANCE NOT EVALUATED	- EQUIPMENT COMMERCIALLY AVAILABLE - EMERGING TECHNOLOGY STATUS AS OF 1988 - PROCESS OPERATIONS INCLUDE EFFLUENT MONITORING AND FILTER BACKWASHING - FULL-SCALE APPLICATIONS COMPLETED - PERMITTING AND PUBLIC ACCEPTANCE SHOULD BE STRAIGHTFORWARD	- EQUIPMENT IS READILY AVAILABLE - FULL-SCALE TECHNOLOGY - TREATMENT PROCESS IS WELL-ESTABLISHED - TREATABILITY STUDIES ARE REQUIRED TO DETERMINE IF CONTAMINANTS CAN BE DEGRADED ANAEROBICALLY - DEPARTMENT AND MIDITS ACCESSED.
EFFECTIVENESS	- EFFECTIVE FOR TREATMENT OF WIDE RANGE OF ORGANIC WASTES - HIGH CONCENTRATION OF CONTAMINANTS MAY AFFECT THE EFFICIENCY OF THIS TECHNOLOGY - REDUCES TOXICITY OF WASTE STREAM	- REMOVAL EFFICIENCY GREATER THAN 95% - USED IN CONJUNCTION WITH CHEMICAL COMPLEXING AND PRECIPITATION - BACKWASHING OF FILTER MATERIAL REQUIRED PERIODICALLY FOR METALS REMOVAL AND RECOVERY - REMOVES BOTH DISSOLVED AND SUSPENDED CONTAMINANTS - REDUCES TOXICITY OF WASTE STREAM	- CAN EXCEED 95% EFFICIENCY - PRODUCES SLUDGE REQUIRING DISPOSAL AND OFF-GAS TREATMENT - POTENTIAL FOR ODOR FORMATION - REDUCES TOXICITY OF WASTE STREAMS
PROCESS OPTION	WHITE-ROT FUNGUS	ADSORPTIVE FILTRATION	ANAEROBIC REACTORS
ENTRY	138	108	13.7